

WEEKLY TEST MEDICAL PLUS -01 TEST - 10 RAJPUR **SOLUTION Date 21-07-2019**

[PHYSICS]

- Let F be the upthrust of the air. As the balloon in descending 1. down with an acceleration a,
 - \therefore mg F = ma(i)

Let mass m_o be removed from the balloon so that it starts moving up with an acceleration a. Then,

$$F - (m - m_0)g = (m - m_0)a$$

$$F - mg + m_0 g = ma - m_0 a$$
(ii)

Adding eqns. (i) and (ii), we get

$$m_0g = 2 ma - m_0a$$

$$m_0(g + a) = 2ma$$

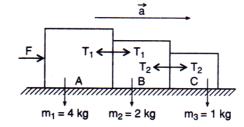
$$\mathbf{m}_0 = \frac{2ma}{a+g}$$

2. According to free body diagram of block A,

$$F - T_1 = m_1 a$$

$$T_1 - T_2 = m_2 a$$

 $T_2 = m_3 a$


$$T_{2} = m_{2}a$$

Addding all the three egns., we get

$$F = (m_1 + m_2 + m_3)a$$

$$a = \frac{F}{m_1 + m_2 + m_3}$$

$$F = (m_1 + m_2 + m_3)a$$
 or $a = \frac{r}{m_1 + m_2 + m_3}$

 $(m - m_0)g$

$$=\frac{14}{4+2+3}$$

Putting in eqn. (i), contact force between A and B is

$$T_1 = F - m_1 a = 14 - 4 \times 2 = 6 N$$

Hence, correct option is (a)

4. Time periof of a simple pendulum is given:

$$T = 2\pi \sqrt{\frac{I}{g}}$$
 or $T \propto \sqrt{\frac{I}{g}}$

When the elevator is accelerating downwards, then net gravitational acceleration is (g - a). So, the time period when elevator is accelerating downwards, is greatest.

5. As per Newton's third law of motion, when a horse pulls a wagon, the force that causes the horse to move forward is the force the ground exerts on it.

$$F = \frac{d}{dt}(Mv) = v\frac{dM}{dt} + M\frac{dv}{dt}$$

As v is a constant, $F = v \frac{dM}{dt}$

But
$$\frac{dM}{dt} = M \text{ kg/s}$$

To keep the conveyer belt moving at v m/s, Force needed = vM newton

7. Given that:

$$u=10 \text{ m/s}, \ \frac{dm}{dt}=2 \text{ kg/s}$$

Total mass of the truck, M = (100 + 100)kg = 200 kg We know that.

$$F = \frac{udm}{dt}$$

or
$$F = 10 \times 2 = 20 \text{ N}$$

8. Direction of resultant will be given by $tan\theta$, where θ is the angle which resultant makes with x-axis.

$$\therefore \quad \tan \theta = \frac{y}{x} = \frac{1}{2}$$

or
$$2y = x$$

or
$$2y - x = 0$$

9.

10.
$$F - Mg = Ma$$

8000 = 2000 a

:. Acceleration is 4 ms⁻² upwards

11. For minimum stopping distance the tyres should be jammed. Here, the car will stop due to sliding friction. Hence, $F = \mu Mg$.

The retarding force produced will be

$$Ma = \mu Mg$$

So, both the cars will have the same stopping distance

12. Considering free-body diagrams of the masses, we have

$$T-3g=3a$$
 and $5g-T=5a$

Solving for T, we have

$$T = (15/4)g$$

 \therefore F = Force on the pulley

$$= 2T = 2 \times \frac{15}{4} = 7.5 \text{ kg f}$$

13. Let T be the tension in the rope and a the acceleration of the rope.

The absolute acceleraion of man is therefore $\left(\frac{5g}{4}-a\right)$. Equations of motion for

mass and man gives.

$$T - 100g = 100a$$

$$T - 60g = 60\left(\frac{5g}{4} - a\right)$$

14. Change in momentum in one sec, i.e.,

F = change in momentum per bullet x no. of bullets fired per second

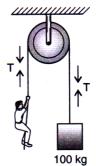
$$= mv \times n = mnv$$

15. Reading of spring balance = tension

$$T = \frac{2m_1m_2g}{m_1 + m_2} = \frac{2 \times 2 \times 2 \times 9.8}{2 + 2}$$

$$19.6 \text{ N} = \frac{19.6}{9.8} \text{kgf} = 2 \text{kgf}$$

16. Let the accelerationbe a.


Then
$$20 = 0 + 0.1 \times a$$

$$a = 200 \text{ ms}^{-2}$$

and Force =
$$0.150 \times 200 \text{ N} = 30 \text{ N}$$

17. Tension = m(g + a)

$$=5000(9.8 + 2) = 5900 N$$

18.
$$T_2 = \frac{6}{6+6+6}F = \frac{F}{3}$$

Accelerations of the skaters will be in the ratio $\frac{F}{4} : \frac{F}{5}$, i.e., 5 : 4 19.

Now according to the equation, $s = 0 + \frac{1}{2}at^2$ we get;

$$\frac{s_1}{s_2} = \frac{a_1}{a_2} = \frac{5}{4}$$

20. Suppose F = upthrust due to buoyancy

Then while descending, we find:

$$Mg - F = M\alpha$$
(i)

when ascending, we have:

$$F - (M - m)g = (M - m)\alpha \qquad(ii)$$

Solving eqns. (i) and (ii), we get;

$$m = \left\lceil \frac{2\alpha}{\alpha + g} \right\rceil M$$

21. For a body to the equilibrium, it should exist both in translational equilibrium.

For translational equilibruim, $\Sigma F = 0$

and for rotational equilibrium, $\Sigma \tau = 0$

22.

For on M_1 will be $F_1 = M_1a_1$ Let the force on M_2 be F_2 . Then $F_2 = M_2a_2$ Also, $F = F_1 + F_2 = M_1a_1 + M_2a_2$

Also,
$$F = F_1 + F_2 = M_1 a_1 + M_2 a_2$$

$$\therefore a_2 = \frac{(F - M_1 a_1)}{M_2}$$

- Acceleration of the mass m_3 = common acceleration of the system = $\frac{F}{\text{total mass}} = \frac{F}{m_1 + m_2 + m_2}$ 23.
- 24. Because the raindrop is falling with uniform velocity, there will be no change in its actual weight,

i.e., Weight =
$$mg = \frac{0.2}{1000} \times 10 = 0.002 \text{ N}$$

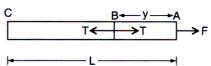
25.
$$\overrightarrow{F}_{\text{satellite}} + \overrightarrow{F}_{\text{dust}} = 0$$

$$\overrightarrow{F}_{\text{satellite}} - \overrightarrow{F}_{\text{dust}}$$

$$= -v \frac{dM}{dt}$$

$$\therefore \quad \mathsf{F}_{\mathsf{satellite}} = -\mathsf{v} \, \frac{\mathsf{dM}}{\mathsf{dt}}$$

$$= - v/.\alpha v = - \alpha v^2$$


$$\therefore \quad (acceleration)_s = -\frac{\alpha v^2}{M}$$

26. Acceleration of the rope a = (F/M)(i)

Now, considering the motion of the part AB of the rope [which has mass $\left(\frac{M}{L}\right)$ y and acceleration given by

egn. (i) assuming that tension at B is T.

$$F - T = \left(\frac{M}{L}y\right) \times a$$

or
$$F - T = \frac{M}{L}y \times \frac{F}{M} = \frac{Fy}{L}$$

or
$$T = F - F \frac{y}{L} = F \left(1 - \frac{y}{L} \right)$$

- 27. One of the weights given a reading and the other prevents the acceleration of the styem. Therefore, the reading is not zero but 10 N.
- 28. Equations of motion are:

$$F - T_1 = 2a$$
(i)
 $T_1 - T_2 = 3a$ (ii)
 $T_1 - T_2 = 3a$ (iii)

Adding all above equations, we get;

$$F = 10a = 10 \times 1 = 10 N$$

29. Let the initial length of the string be L

$$(x - L)K = 5, (y - K)K = 7$$

 $(z - L)K = 9$

$$\frac{x-L}{v-L} = \frac{5}{7}$$
 and $\frac{y-L}{z-L} = \frac{7}{9}$

Solving, we get;
$$z = 2y - x$$
.

30.
$$Mg - T = Ma$$

$$T = M(g - a) = Mg\left(1 - \frac{a}{g}\right)$$

or
$$\frac{2}{5}$$
Mg = Mg $\left(1 - \frac{a}{g}\right)$

or
$$\frac{a}{g} = 1 - \frac{2}{5} = \frac{3}{5}$$

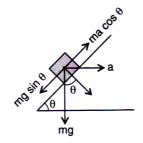
$$\therefore$$
 a = 0.6 g

- 31. The tension in the string between P and Q accelerates double the mass as compared to that between A and R. Hence, tension between P and Q = $2 \times$ tension between Q and R
- 32. The weight of the body should be balanced by the vertical force exerted by the inclined plane on the block.
- 33. Momentum carried by each bullet = mv

$$= 0.010 \times 500 \text{ kg-m/s} = 5 \text{ kg-m/s}$$

Now, force = change in momentum in 1 sec

$$= 5 \times 10 = 50 \text{ N}$$


$$\therefore \quad \text{Acceleration} = \frac{50}{200} \text{m/s}^2 = 25 \text{cm/s}^2$$

34.
$$mg sin\theta = ma cos\theta$$

or
$$a = g tan\theta$$

$$\therefore \sin \theta = \frac{1}{I}$$

Hence,
$$\tan \theta = \frac{1}{\sqrt{I^2 - 1}}$$

$$\therefore \quad a = \frac{g}{\sqrt{I^2 - 1}}$$

35. Net force on the rod = $F_1 - F_2$

As mass of the rod is M, hence acceleration of the rod is:

$$a = \frac{(F_1 - F_2)}{M}$$

If we now consider the motion of part AB of the rod [whose mass is equal to (M/L)y], then

$$F_1-T=\frac{M}{I}y\times a$$

where T is the tension in the rod at the point B.

Now,
$$F_1 - T = \frac{M}{L}y \times \left(\frac{F_1 - F_2}{M}\right)$$

or
$$T = F_1 \left(1 - \frac{y}{L} \right) + F_2 \left(\frac{y}{L} \right)$$
.

Alternative Method: Considering motion of the other part BC of the rod also, we can calculate tension at the point B. In this case,

$$T - F_2 = \frac{M}{L}(L - y) \times a$$

or
$$T = F_2 + \frac{M}{L}(L - y) \times \frac{(F_1 - F_2)}{M}$$

$$= F_1 \left(1 - \frac{y}{L} \right) + F_2 \left(\frac{y}{L} \right)$$

36.
$$T \cos\theta = T_1 = 10 \times g$$

 $T \sin\theta = 98$

$$\therefore \tan \theta = \frac{98}{10 \times 9.8} = 1 \qquad \text{or} \quad \theta = 45^{\circ}$$

37. Change in momentum of each bullet = 5[v - (v)]

$$\Delta p = 10v$$

Because 10 bullets are fired per second, hence change in momentum per sec

i.e.,
$$F = \Delta p \times 10 = 10v \times 10$$

This force will be directed upwards and will balance the weight of the dish

i.e.,
$$10v \times 10 = 10 \times 980$$

= 98 cm/sec

- 38. Firstly, when the cap is opened, gas and liquid rush out and as a reaction weight increases and then it decreases.
- 39. Momentum of one bullet

$$= mv = 20 \times 10^{-3} \times 300$$

$$p = 6kg-m/sec.$$

$$N = Number of bullets/sec = 4$$

$$\therefore \frac{dp}{dt} = change of momentum/sec or force$$

$$= Np = 4 \times 6 = 24 N$$

40. Now,
$$a = \frac{\sqrt{F_1^2 + F_2^2}}{m} = \frac{F_3}{m} = \frac{R_3}{m}$$

42.
$$\frac{dm}{dt} = 0.1 \text{kg/sec}; \text{ Mass of the rocket} = 100 \text{ kg}$$

$$F = \frac{d(mv)}{dt}$$

$$= m \frac{dv}{dt} - v \frac{dm}{dt}$$
 (as the mass is decreasing)

$$0 = 100a - 1000 \times 0.1$$

$$a = 1 \text{ m/s}^2$$

43.
$$\vec{F} = 6\vec{i} - 8\vec{j} + 10\vec{k}$$

$$|\vec{F}| = \sqrt{36 + 64 + 100} = \sqrt{200} \, \text{N} = 10\sqrt{2} \, \text{N}$$

Acceleration, $a = 1 \text{ ms}^{-2}$

$$\therefore \quad \text{Mass, M} = \frac{10\sqrt{2}}{1} = 10\sqrt{2}\text{kg}$$

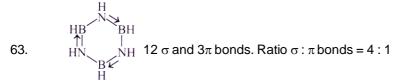
44.

45. The net upward acceleration is $9.8 - 2.8 = 7 \text{ m/sec}^2$ Total mass = 80 + 5 = 85 kg

So, net upward force is $F = 85 \times 7 = 595 \text{ N}$

[CHEMISTRY]

- 46 CH₂=CH-CH₂-C=CH has 10σ -bonds are 3π -bonds
- 47. BF₃ has sp²-hybridisation and trigonal planar geometry.
- 48. 34 electrons


49. 50.

- 51. BF_3 and NO_2^- have sp^2 -hybridised central atom while NH_2^- and H_2O have sp^3 hybridised central atom.
- 52. Sp²-hybridisation
- 53. SF₄ and I₃⁻ and PCI₅ are sp³d-hybridised. In general PCI₅(g) in considered sp³d. In solid state, PCI₅ exists as (PCI₄)⊕ (PCI₅)[⊕] with sp³ and sp³d²-hybridisations respectively.
 - SbCl $_5^{2-}$ has 5σ bonds and one lone pair. It is sp 3 d 2 -hybridised.
- 54. Four atoms directly related with C≡C are linearly arrnaged
- 55. XeF has 8 electrons in valence shell. In XeF₂, XeF₄ and XeF₆, two sigma bonds, four sigma bonds and six sigma bonds are respectively formed. Hence, in XeF₂ 3 pairs of electrons are left, in XeF₄ 2 pairs of electron are left and in XeF₆ only 1 pair of electron is left.
- 56. In BH₃, B-atom forms 3σ -bonds has sp²-hybridization. In B₂H₆, each B-atom is joined with 4H atoms and is sp³-hybridization
- 57. $AIH_3 \xrightarrow{H^-} AIH_4^-$ Al is sp² Al is sp³
- 58. Each f C¹ and C² are forming two sigma bonds. Hence, both are sp-hybridised.

59.

60.
$$\times$$
 XeO₄ has 4σ - and 4π -bonds.

- 61. In SF₄, sulphur atom is sp³d hybridized with two axial and two equitorial F-atoms and one lone pair on equitorial position.
 - The axial S-F bonds are larger than equitorial S-F bonds.
- 62. In methane C-atom is sp³-hybridized with 25 s-character. In ethene, it is sp² with 33 s-character has to be less than 25 (actual value is 21.43)

64
$$\Delta H = \frac{1}{2} \Delta_{\text{diss.}} H^{\theta} + \Delta_{\text{eq}} H^{\theta} + \Delta_{\text{hyd.}} H^{\theta}$$
$$= \frac{240}{2} + (-349) + (-381) = -610 \text{ kJ mol}^{-1}$$

- 65. Highest product of charges of ions.
- 66. Phosphorus (1s²2s²2p63s²3p63d) can expand electronic configuration become of availability of 3d-subshell in valence shell.
 - Nitrogen (1s²2s²2p³) has no d-subshell in valence shell for expansion of electronic configuration.
- 67. Cu²+ and SO₄²- have coulombic forces of attraction giving rise to ionic bond. Four H₂O molecules form coordinate bonds with Cu²+. One H₂O molecule joins two H₂O related to Cu²+ and also SO₄²- by H-bonds. H₂O itself has covalent bonds.
- 68. Ca $\pi |\pi| |\pi$, one sigma and two pi bonds
- 69. x is related to sp³-hybridized C-atom, y is related to sp²-hybridized C-atom and z is related to sp-hybridised C-atom.